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Joint Estimation of Model Parameters and 
Outlier Effects in Time Series 

CHUNG CHEN and LON-MU LIU* 

Time series data are often subject to uncontrolled or unexpected interventions, from which various types of outlying observations 
are produced. Outliers in time series, depending on their nature, may have a moderate to significant impact on the effectiveness of 
the standard methodology for time series analysis with respect to model identification, estimation, and forecasting. In this article we 
use an iterative outlier detection and adjustment procedure to obtain joint estimates of model parameters and outlier effects. Four 
types of outliers are considered, and the issues of spurious and masking effects are discussed. The major differences between this 
procedure and those proposed in earlier literature include (a) the types and effects of outliers are obtained based on less contaminated 
estimates of model parameters, (b) the outlier effects are estimated simultaneously using multiple regression, and (c) the model 
parameters and the outlier effects are estimated jointly. The sampling behavior of the test statistics for cases of small to large sample 
sizes is investigated through a simulation study. The performance of the procedure is examined over a representative set of outlier 
cases. We find that the proposed procedure performs well in terms of detecting outliers and obtaining unbiased parameter estimates. 
An example is used to illustrate the application of the proposed procedure. It is demonstrated that this procedure performs effectively 
in avoiding spurious outliers and masking effects. The model parameter estimates obtained from the proposed procedure are typically 
very close to those estimated by the exact maximum likelihood method using an intervention model to incorporate the outliers. 

KEY WORDS: Estimation accuracy; Intervention analysis; Iterative estimation; Masking effect; Outlier detection; Power of detection; 
Spurious outlier. 

Most time series data are observational in nature. In ad- 
dition to possible gross errors, time series data are often sub- 
ject to the influence of some nonrepetitive events; for ex- 
ample, implementation of a new regulation, major changes 
in political or economic policy, or occurrence of a disaster. 
Consequently, discordant observations and various types of 
structural changes occur frequently in time series data. 
Whereas the usual time series model is designed to grasp the 
homogeneous memory pattern of a time series, the presence 
of outlying observations or structural changes raises the 
question of efficiency and adequacy in fitting general auto- 
regressive moving average (ARMA) models to time series 
data (see, for example, Abraham and Box 1979; Chen and 
Tiao 1990; Guttman and Tiao 1978; Hillmer 1984; Hillmer, 
Bell, and Tiao 1983; Ledolter 1988; and Tsay 1986). 

A common approach to deal with outliers in a time series 
is to identify the locations and the types of outliers and then 
use intervention models discussed in Box and Tiao (1975) 
to accommodate the outlier effects. This approach requires 
iterations between stages of outlier detection and estimation 
of an intervention model. Procedures considered by Chang, 
Tiao, and Chen (1988), Hillmer et al. (1983), and Tsay 
(1988) are quite effective in detecting the locations and es- 
timating the effects of large isolated outliers; however, a few 
issues still remain: 

a. The presence of outliers may result in an inappropriate 
model. 

b. Even if the model is appropriately specified, outliers 
in a time series may still produce bias in parameter 
estimates and hence may affect the efficiency of outlier 
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detection. A typical difficulty found in this approach 
was that both the types and locations of outliers may 
change at different iterations of model estimation. 

c. Some outliers may not be identified due to a masking 
effect. 

Tsay (1985) attempted to resolve the issue of model identi- 
fication in the presence of outliers; in this article we focus 
on solving the problems of b and c. 

This study's main goal is to design a procedure that is less 
vulnerable to the spurious and masking effects during outlier 
detection and is able to jointly estimate the model parameters 
and outlier effects. In Section 1 four types of outliers are 
defined and issues of detecting outliers and adjusting their 
effects are investigated. To achieve outlier detection and pa- 
rameter estimation jointly, the procedure proposed in this 
article consists of three major stages of iterations. The mo- 
tivation and the detailed steps of the proposed procedure are 
discussed in Section 2. The behavior of the test statistics and 
the performance of the proposed procedure are investigated 
in Section 3. An illustrative example is given in Section 4, 
and conclusions are presented in Section 5. 

1. OUTLIERS IN TIME SERIES 

The proposed procedure may be applied to general sea- 
sonal and nonseasonal ARMA processes. To simplify the 
presentation, only the nonseasonal case without a constant 
term will be used to illustrate the procedure. Let { Y, } be a 
time series following a general ARMA process, 

Y' = 0(B) at t n, (1) 
a(B) 0(B) 

where n is the number of observations for the series; 0(B), 
0(B), and a(B) are polynomials of B; all roots of 0(B) and 
0(B) are outside the unit circle; and all roots of a(B) are on 
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the unit circle. The model in (1) may include a constant 
term when the nonstationary operator a(B) is contained on 
the left side of the model equation. To describe a time series 
subject to the influence of a nonrepetitive event, the following 
model is considered: 

Y* = Y + w 
A 

11)It(t ), (2) 
G(B)H(B) 

where Yt follows a general ARMA process described in (1), 
It(tl) = l if t = tl, and It(tl) = 0 otherwise. Here It(tl) is an 
indicator function for the occurrence of the outlier impact, 
t1 is the possibly unknown location of the outlier, and w and 
A (B)/ { G(B)H(B) } denote the magnitude and the dynamic 
pattern of the outlier effect. The model for a time series that 
allows for multiple outliers is presented in ( 19). If the location 
and the dynamic pattern of an event is known, then model 
(2) is the intervention model studied by Box and Tiao (1975). 
In this article we consider the estimation problem when both 
the location and the dynamic pattern are not known a priori. 
The approach is to classify an outlier impact into four types 
by imposing a special structure on A(B)/ { G(B)H(B) }. The 
types include an innovational outlier (10), an additive outlier 
(AO), a level shift (LS), and a temporary change (TC). Their 
definitions are given below: 

10: A(B) = 0(B) (3) G(B)H(B) a(B)k(B)' 

A (B) 
G(B)H(B) 1 (4) 

TC: A (B) I 1 (5) 

and 

L- A(B) = 1(6 
L:G(B)H(B) -(1 1-B)~ (6 

For a more detailed discussion on the nature and the mo- 
tivation of these outlier types, see Chen and Tiao (1990), 
Fox (1972), Hilimer et al. (1983), and Tsay (1988). The four 
outliers represent various types of simple outlier effects; more 
complicated responses usually can be approximated by 
combinations of the four types. In principle, the proposed 
procedure can handle any other specific form of outlier re- 
sponses. 

1.1 Effect of Outliers on the Observed Series 

It is useful to note that, except for the case of an 10, the 
effects of outliers on the observed series are independent of 
the model. Also, the AO and LS are two boundary cases of 
a TC, where 6 = 0 and 6 = 1. For a TC, the outlier produces 
an initial effect w at time tl, and this effect dies out gradually 
with time. The parameter 6 is designed to model the pace of 
the dynamic dampening effect. In practice, the value of 6 
can be specified by the analyst. We recommend that 6 = .7 
be used to identify a TC. In the case of an AO, the outlier 
causes an immediate and one-shot effect on the observed 
series. A LS produces an abrupt and permanent step change 
in the series. 

On a time series, the effect of an IO is more intricate than 
the effects of other types of outliers. Using the formulation 
of model (3), we see that when an 10 occurs at t = tl, the 
effect of this outlier on Yt1+k, for k 2 0, is equal to Wi//k, 

where w is the initial effect and I/k iS the kth coefficient of 
the A'(B) polynomial where 

p(B) = {I0(B) } / { (B)k(B)} 
= ('Po + iPIB +IP2B 2 + 'P ) o =1 

For a stationary series, an IO will produce a temporary effect 
because the 4'j's decay to 0 exponentially. The pattern of 4'j's 
for a nonstationary series can be quite different. Depending 
on the model of Yt, an TO may produce (a) an initial effect 
at the time of the intervention and a level shift from the 
second period of the intervention, if Y, follows an autore- 
gressive integrated moving average (ARIMA)(O, 1, 1) model; 
(b) an initial effect at the time of intervention, gradually 
converging to a permanent level shift if Y, follows an 
ARIMA( 1, 1, 1) model; (c) a seasonal level shift if Y, follows 
a pure seasonal ARIMA (0, 1, 1)5 model (e.g., a level shift 
at every January of each year for monthly series), and (d) 
an annual trend changes if Y, follows a multiplicative seasonal 
ARIMA(O, 1, 1) X (0, 1, 1), model. 

1.2 Estimating and Adjusting the Effect 
of an Outlier 

To examine the effects of outliers on the estimated resid- 
uals, we assume that the time series parameters are known 
and the series is observed from t = - J to t = n, where J is 
an integer larger than p + d + q, and that 1 < t1 < n where 
p, d, and q are orders of the polynomials ?(B), a(B), and 
0(B). We define the r(B) polynomial as 

7r(B)= {4(B)a(B) }/ { 0(B) } = 1 -r1 B- r2B2 _ * 

where the -rj weights for j beyond a moderately large J be- 
come essentially equal to 0, because the roots of 0(B) are all 
outside the unit circle. The estimated residuals et, which may 
be contaminated with outliers, can be expressed as 

et=r(B)Yt*, for t = 1, 2, .... (7) 

For our four types of outliers, we have 

TO: et = w1t(t1) + at, (8) 

AO: et = wir(B)It(ti) + at, (9) 

TC: et = w {r(B)/(1 - aB)}(It tl) + at, (10) 

and 

LS: et = w{ir(B)/(I - B)}It(t1) + at. (11) 

Alternatively, we can rewrite equations (8)- (11) as 

et = wXit + at, 

t = tl, t, + 1, . . ., n and i = 1, 2, 3, 4, (12) 

where xi1 = 0 for all i and t < t1, x111 = 1 for all i and k>2 1, 

X1(11+k) - 0, X2(11+k) - -1r/k, X3(t1+1k = 1 - ir1 j, and 
X4(t +k) = ak _ zJ4-1 ak?r1j - 71k. Hence the least squares 
estimate for the effect of a single outlier at t = t1 may be 
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expressed as 

(<AO(tl) - etL 

t= tl eX2t 

(OLS(tl) - n 2 A ~~~t= ti eX3t 

A (tl) - ,=,, eLX4,( WTC(tl) n 2 ~~~~(13) 2:t=tl x4t 

It is important to note that for the last observation (i.e., t1 
= n), cIO (n) = WAO(n) = WLS(n) = WTC(n) = e". As a result, 
it is impossible to empirically distinguish the type of an out- 
lier occurring at the very end of a series. 

As discussed in Chang et al. (1988), a possible approach 
for detecting outliers is to examine the maximum value of 
the standardized statistics of the outlier effects 

fAO(tl) = <AIo(tl )/ A xf 

n 1/2 

TAO(tl) = {WL()tl)/:a} ( x2t) 
t=tJ 

n 1/2 

TLS(tl = WtLS(t0l)aa } x2 ) 
t=tJ 

n \1/2 

TTC(tl) = {CZTC(tl)/&a} z 2) * (14) 
t=tJ 

For a given location, these standardized statistics follow an 
approximately normal distribution. Knowing the type and 
the location of an outlier, one can adjust the outlier effects 
on the observations and the residuals using Equation (3) and 
Equations (8)-( 11). In general, the adjusted observation at 
ti, denoted Y1t, can be expressed as a weighted sum of the 
entire observed series. In the case of IO, it can be shown that 
the adjusted observation Y1t is the conditional expectation 
of Yt, given the past observations. Under an AO, the adjusted 
observation is the interpolation based on both the past and 
the future Y's, but it does not involve Yt,. This suggests a 
possible approach to estimating missing values in a time series 
by treating the missing data as an AO. 

1.3 The Issue of Multiple Outliers 

When there are multiple outliers, the previously described 
estimate of co at time period t, may not be an unbiased es- 
timate for the outlier effect at t1, due to the influence of 
neighboring outliers. Consider the following special case of 
two additive outliers in an ARMA model: 

yt= WII(tI) + w2I(t2) + {O(B)/4(B)}at. (15) 

Assuming that the series is fitted by an appropriate ARMA 
model and that e^t is the estimated residual, we have 

e = ir(B)Yt* = co1r(B)12(t1) + s.2ir(B)It(t2) + at. (16) 

If we know the location of the outliers, say t1 and t2, the 
effects of outliers at t, and t2 may be estimated jointly as 

W I = [1 - a12/a1 a22] { - I(21/CY1)2l} 

2 = [1 - a12/a,11a22 {-(a2l/a22)&ol + &o2}1 (17) 

where ir(B) = (1 - ir1B - 'X2B2- * ) = O(B)IO(B), 
akk = f k-ok 4, k = 1, 2, iro = 1, a21 = a21 = irt2-tl 
+ z in 12iri121 for t2 > t1, and ( &1, c2) are estimates of w1 
and W)2 obtained separately assuming that only a single outlier 
is present, as described in (13). In an iterative outlier detec- 
tion procedure, as proposed by Chang et al. (1988) and Tsay 
(1988), one could adjust the effect of w1 on the residual et's 
and then use the adjusted residuals to estimate W2 or vice 
versa. Let oij denote the estimate of wi after the effect of wj 
has been adjusted. We can derive that 

&<2. 1 = &<2 -(aI 12/a(22)&(<l 

&<1.2 = 'OI - (a12/a11)&,2* (18) 

Consequently, for the two-outlier case, the preceding ap- 
proach results in the estimates of either (col, C02.1) or (C01.2, 

w02). Depending on the structure of the time series and the 
relative positions of t, and t2, the estimates of (wl, W2) ob- 
tained from a sequentially adjusted procedure of Chang et 
al. (1988) can be quite different from the results of joint 
estimation, as illustrated in (17). 

From a computational standpoint, the strategy of detecting 
outliers one by one may be the only feasible approach to 
dealing with multiple outliers. It seems more appropriate, 
however, to estimate the outlier effects jointly rather than 
sequentially. The preceding analysis also indicates that a 
procedure based solely on iteratively adjusted residuals often 
may produce biased estimates for adjacent outliers. 

1.4 Estimation of Residual Standard Deviation aa 

To compute the test statistics of outliers as given in (14), 
one needs to estimate 0fa, The determination of outliers can 
be sensitive to this estimate. In the presence of outliers, the 
residuals are contaminated; hence 0fa may be overestimated 
if the usual sample standard deviation is used. Three methods 
for obtaining a better estimate of 0fa are considered in this 
study: (1) the median absolute deviation (MAD) method, 
(2) the a% trimmed method, and (3) the omit-one method. 

The MAD estimate of the residual standard deviation is 
defined as 

aa= 1.483 Xmedian{j i-el}, 
where e is the median of the estimated residuals (Andrews 
et al. 1972, p. 239). To compute the a% trimmed standard 
deviation, we first remove the a% largest values (according 
to their asbolute values) and then compute the sample stan- 
dard deviation based on the trimmed sample. When con- 
ducting an outlier test at time point tl, the omit-one method 
calculates the usual residual standard deviation with the re- 
sidual at time t1 omitted. The MAD and a% trimmed meth- 
ods require sorting of the residuals. In cases of large sample 
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size, the required computing time can be much greater for 
these two methods than for the omit-one method. The mo- 
tivation of these methods is to reduce the possibility of mis- 
detection due to an inflated estimate of the residual standard 
deviation. Once the locations of outliers are identified and 
their effects are estimated, ?a can be estimated based on the 
sample standard deviation of the adjusted residuals. 

2. A JOINT ESTIMATION PROCEDURE IN THE 
PRESENCE OF MULTIPLE OUTLIERS 

Suppose that the series Y, is subject to m interventions at 
time points t1, t2, . . . , t,., resulting in various types of outliers. 
The model for Y* can be expressed as 

m 0(B) 
Y* - &jL1(B)It(tj) + -B''B' at' (19) 

where Lj(B) = 0(B)/ {J(B) a(B) } for an 10, Lj(B) = 1 for 
an AO, Lj(B) = 1/(1 - B) for an LS, and Lj(B) = 1/ 
(1 - 6B) for a TC at t = tj. Without distinguishing the no- 
tations of the estimated and the true parameters, the residuals 
{ e^ } by fitting an ARMA model to Y,* may be expressed as 

m 
et = E w7r(B)Lj(B)I1(tj) + a, (20) 

j=1 

when the underlying model is correctly specified but outlier 
effects are not taken into consideration. Equations (19) and 
(20) are the foundation of the proposed procedure. If the 
effects of outliers and their locations are available, then we 
can adjust the outlier effects based on Equation (19) and 
thereafter estimate the model parameters. On the other hand, 
when the model parameters are known, we can identify out- 
liers and estimate their effects based on Equation (20). It is 
difficult, if not impossible, to achieve our stated goals in a 
single step. Thus we develop an iterative procedure that con- 
sists of three major stages. In Stage I all the potential outliers, 
tj and Lj(B), are identified, based on preliminary model pa- 
rameter estimates. In Stage II joint estimates of the model 
parameters and outlier effects are obtained using the accu- 
mulated outlier information of Stage I. In Stage III outliers 
tj and Lj(B) are identified and their effects estimated again, 
based on the less-contaminated estimates of model param- 
eters obtained in Stage II. 

2.1 The Detection and Estimation Procedure 

In this section we provide a detailed summary of the pro- 
posed iterative procedure for the joint estimation of model 
parameters and outlier effects. 

Stage I.: Initial Parameter Estimation and Outlier 
Detection 

1. 1. Compute the maximum likelihood estimates of the 
model parameters based on the original or the ad- 
justed series and obtain the residuals. For the very 
first iteration, the original series is used to initiate the 
procedure; after the first iteration, the adjusted series 
is used. 

Inner Loop of Outlier Detection for Fixed Model 
Parameter Estimates 

I.2. For t = 1, ..., n, compute TOt)(t), TAO(), TLS(t), 
and TTC(t) in (14) using the residuals obtained from 
I.1, and let q, = max{T Ao(t)J, IiAO(t)1, ITLS(t)I, 
I7 TC(t)I}. If maxttit = Irtp(t1)I > C, where C is pre- 
determined critical value, then there is a possibility 
of a type tp outlier at t1; tp may be 10, A0, LS, or 
TC. 

1.3. If there is no outlier found, then go to step 1.4. Oth- 
erwise, remove the effect of this outlier from the re- 
siduals and the observations according to its type, 
then go back to step 1.2 to check if an additional out- 
lier can be found. 

1.4. If no outliers are found in the very first iteration of 
this inner loop, then stop-the observed series is free 
from outlier effects. If outliers are found in the inner 
loop under the given parameter estimates, then go to 
step 1. 1 to revise the parameter estimates. If the total 
number of outliers in all of the inner loops is greater 
than 0 and no additional outliers are detected in the 
current inner loop, then go to step 11. 1. 

Stage II: Joint Estimation of Outlier Effects and Model 
Parameters 

11. 1. Suppose that m time points t1, t2, ..., tm are iden- 
tified as possible outliers of various types. The outlier 
effects wj's can be estimated jointly using the multiple 
regression model described in (20), where { et } is 
regarded as the output variable and { Lj(B)It(tj)} 
are the input variables. 

11.2. Compute the X statistics of the estimated wi's, where 
Tji =W u>st(>, 1, . . . , m. If min, 'ry = rv < C, 
where C is the same critical value used in step 1.2, 
then delete the outlier at time point t, from the set 
of the identified outliers and go to step 11. 1 with the 
remaining m - 1 outliers. Otherwise, go to step II.3. 

11.3. Obtain the adjusted series by removing the outlier 
effects, using the most recent estimates of wj's at step 
II. 1. In other words, remove only the outlier effects 
that are significant based on the iterations of steps 
II.1 and.II.2. 

11.4. Compute the maximum likelihood estimates of the 
model parameters based on the adjusted series ob- 
tained at step 11.3. If the relative change of the resid- 
ual standard error from the previous estimate is 
greater than e, go to step 11. 1 for further iterations; 
otherwise, go to step III. 1. The tolerance e is a pre- 
determined constant chosen by the user as a means 
to control the accuracy of parameter estimates. An 
appropriate tolerance value, for example, could be 
.001. 

Stage III: Detection of Outliers Based on the Final 
Parameter Estimates 

111. 1. Compute the residuals by filtering the original series 
based on the parameter estimates obtained at step 
1I.4. 
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III.2. Use the residuals obtained at step III. 1 and iterate 
through Stages I and II with the modifications that 
(a) the parameter estimates used in the inner loop 
of Stage I are fixed to those obtained at step II.4 and 
(b) steps 11.3 and II.4 are omitted in Stage II. The 
estimated , 's of the last iteration at step I. 1 are 
the final estimates of the effects of the detected out- 
liers. 

2.2 Some Remarks on the Proposed Procedure 

For a given set of parameter estimates, the inner-loop it- 
eration (steps I.2 and I.3) detects outliers one by one in a 
descending order of magnitude in terms of the X statistics. 
Whenever an outlier is detected, its effects on the residuals 
and on the observations are adjusted accordingly at step 1.3. 
The residual series is then used as step I.2 to detect another 
outlier. This is essentially the procedure proposed by Chang 
et al. (1988). The main reason for using this procedure, which 
detects only a single outlier in an inner-loop iteration, is to 
simplify the computation involved in joint detection of mul- 
tiple outliers. But as discussed in Section 1.3, such a pro- 
cedure may suffer from masking effects, because a later it- 
eration of outlier detection is based on the adjusted residuals 
of the previous iterations. In addition, the parameter esti- 
mates may have bias due to the presence of the outliers. 
Hence is is important to adjust both the observed and the 
residual series based on the type of outlier detected. These 
series may be used in the latter iterations of parameter es- 
timation and outlier detection. The iterations of estimation 
(step I.1) and detection (steps 1.2 and 1.3) in Stage I are de- 
signed to reduce the possibility of masking effects. It is helpful 
to point out that this practice in Stage I is essentially the 
procedure M proposed by Tsay (1988). 

A potential problem for the preceding iterative detection 
procedure is that the identified outliers are not evaluated on 
the same basis in terms of a'. For instance, the first identified 
outlier is detected based on the assumption that no outlier 
is present. Once we decide the presence of the first outlier, 
the residuals and the observations are adjusted accordingly 
and the process of detecting the second outlier begins. As a 
result, computations of the estimates of outlier effects and 
the T statistics given in (13) and (14) at different iterations 
are not based on the same residual series. Consequently, the 
joint effects of these outliers and their X statistics are not 
clearly exhibited. In Stage II, a procedure akin to the back- 
ward elimination procedure in multiple regression is used 
to jointly evaluate the outlier effects and to remove any spu- 
rious outliers. The multiple regression approach has been 
considered by P. Burman (1989), who modified the outlier 
detection programs developed by the U.S. Bureau of the 
Census. 

Based on the notation of "robustness" adopted by Box 
and Andersen (1955), a method is considered to be "robust" 
when the inferential results are sensitive to the main concerns 
but are insensitive to variations of nuisance factors. The pro- 
posed procedure is robust in the sense that the model pa- 
rameter estimates are sensitive to the overall memory pattern 
of a time series but are insensitive to occasional outliers. In 
the next section we conduct extensive simulation studies to 

investigate the power and properties of the proposed joint 
detection and estimation procedure under the assumption 
of Gaussian noise. We have also investigated the performance 
of the proposed procedure under certain non-Gaussian noise, 
such as noise with exponential distributions. In such situa- 
tions, we find that the proposed procedure is effective in 
determining extreme values in a time series, but it cannot 
distinguish such extreme values as outliers or regular obser- 
vations associated with the inherent nature of the distribu- 
tion. Further study on outlier detection and adjustment is 
needed for such distributional assumptions. 
3. A STUDY OF THE PERFORMANCE OF THE JOINT 

ESTIMATION PROCEDURE 
The proposed procedure is iterative in nature and is de- 

signed to accomplish outlier detection and model estimation 
jointly. In Section 3.1 we first investigate the behavior of the 
test statistics used in the procedure. Such information is use- 
ful in providing guidelines for the selection of critical values 
in the detection stage. In Section 3.2 we study the perfor- 
mance of the proposed procedure. There are two aspects to 
the evaluation of procedure performance: (1) the power of 
outlier detection and (2) the accuracy of the parameter es- 
timates. For the power study, we report the relative frequency 
of correct outlier detection and the average frequency of 
misidentified outliers. The estimation performance is ex- 
amined, based on a representative sample of stationary and 
nonstationary models as well as on a selective set of outlier 
alternatives. The criteria of evaluation are the sample mean 
and sample root mean square errors (RMSE's) of the param- 
eter estimates. Other studies on the power of related outlier 
detection procedures were discussed in Chang et al. (1988) 
and Tsay (1988). 
3.1 The Sampling Behavior of the Test Statistics 

The detection procedure essentially is based on the max- 
ima of the test statistics considered in (14). The sampling 
behaviors of the maxima of these test statistics are associated 
with (a) the sample size, (b) the type of outlier, (c) the pattern 
of ir weights of the fitted model, and (d) the estimates of the 
residual standard deviation. The simulation study in this 
section is designed to investigate the sampling properties of 
the maxima of the outlier test statistics. Table 1 lists the 
models considered in this simulation study, which represent 
a broad spectrum of ir weight patterns. 

Model 1 is the mean model; its result is considered a ref- 

Table 1. Underlying Models for the Calculation of Test Statistics 

Model Calculation 

1 Y,= 1Q +at 
2 Yt = 10 + (1-0.8B)at 
3 Yt = 10 + (1 + 0.5B)aE 
4 (1+.5B)Yt=10+at 
5 (1 -.8B)Yt = 10 +at 
6 (1 - B +.24B2)Y, = 10 + at 
7 (1-.9B+B2)Yt=a, 
8 (1 - .5B)VY, = at 
9 VY, =(1 -.8B)a, 

10 VY, =(1 +.5B)a, 
VV12Y, = (1 -*5B)(1 - 

1 1 81 
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erence base for the simulation study. For each model, four 
cases of sample size are examined: n = 50, 100, 250, and 
1,000. The random errors, at's, follow iid normal distribution 
with mean 0 and variance 1. For each model and each sample 
size, 500 series are generated. The test statistics for 10, AO, 
TC, and LS outliers in each series are calculated separately 
based on (14). In this study the focus is on examining the 
sampling behavior of fltp = maxt, l ht(t1) T , where tp = IO, 
AO, TC, and LS. In particular, we wish to estimate the per- 
centiles of those statistics at the 1%, 5%, and 10% levels when 
no outlier is present in the series. 

In the simulation study three methods for obtaining a ro- 
bust estimate of the residual standard deviation, aa, are con- 
sidered. The estimate is computed using (a) the omit-one, 
(b) the MAD, and (c) the 5% trimmed methods discussed 
previously. Due to space limitations, in Figure 1 we only 
provide a graphical summary of the estimates of those per- 
centiles at three significance levels (1%, 5%, and 10%) for 
IO, AO, TC, and LS test statistics based on the omit-one 
method. (Numerical results for the MAD and the 5% 
trimmed methods may be obtained from the authors.) Of 
the three methods of computing the residual standard de- 
viation, the 5% trimmed method produces the highest values 
of the test statistics, whereas the omit-one method and the 
MAD method give similar results. There are 12 plots in Fig- 
ure 1, consisting of the combination of four types of test 
statistics and three significance levels. In each plot percentiles 
for each of the 11 models and four sample sizes are displayed. 
Except for a few cases of 1% percentiles, the estimated per- 
centiles are an increasing function of sample size n. The IO 
test statistic is quite homogeneous with respect to various 
time series models. This is not surprising, because the IO 
test statistic is simply the maximum of the standardized re- 
siduals. In general, the sample size is an important factor 
affecting the behavior of the test statistics. Under the omit- 
one method, the estimated 5% percentiles for IO range from 
3.4 to 4.0 for sample sizes n = 50 to n = 1,000. The AO test 
statistic has slightly higher variations, depending on model 
pattern. For the estimates of 5% percentiles, they range from 
3.0 to 4.0 for sample sizes n = 50 to n = 1,000. There is no 
clear model effect for the TC statistic either, and the estimated 
5% percentiles range from 2.5 to 4.1. The LS test statistic 
has two distinct characteristics. First, its estimated percentiles 
are relatively smaller (in absolute value) than those of other 
outlier types. Second, for models that do not include a regular 
differencing operator, it tends to be substantially lower than 
the others. The estimates of 5% percentiles using the omit- 
one method range from 2.3 to 3.4 in this case. 

Based on these simulation results, the following guidelines 
for choosing the critical value C are recommended. For a 
series with moderate length (say between 100 and 200 ob- 
servations), a critical value C = 3.0 seems to be appropriate. 
For a series of shorter length, a critical value between 2.5 
and 2.9 is recommended. We may consider a critical value 
greater than 3.0 for series of longer length (e.g., over 200 
observations). In practice, it is recommended that more than 
one critical value be used in the analysis, to allow exami- 
nation of the sensitivity of the results to the choice of the 
critical values. Other considerations in the choice of critical 
values are discussed in the next subsection. 

3.2 Performance of the Proposed Procedure 

The proposed procedure is designed to handle multiple 
outliers of various types in a time series. We design simu- 
lations to study the performance of the procedure applied 
to cases characterized by a combination of the following fac- 
tors: (a) four outlier types; (b) four underlying models con- 
sisting of an AR(1), an MA(1), an IMA(0, 1, 1), and a 
multiplicative seasonal model IMA(0, 1, 0) X (0, 1, 1)4; (C) 
three outlier sizes; (d) a single outlier and two adjacent out- 
liers, and (e) outliers occurring at the beginning, in the mid- 
dle, and at the end of the series. Due to space limitations, 
we report only the results of the power of correct detection 
of a single outlier and the accuracy of model parameter es- 
timates. (Results of other cases may be obtained from the 
authors.) 

Table 2 lists the cases considered in this study. Cases 1-9 
are combinations of three underlying models and three out- 
lier sizes. For these cases, series are generated to contain one 
of the four outlier types discussed in Section 1. Cases 10-18 
cover situations of two neighboring outliers occurring at the 
beginning, in the middle, and at the end of the series using 
three different models. For series generated in these cases, 
the first outlier may be one of the four types, and the second 
outlier is fixed as an AO. The standard deviation of the noise 
process for each model is set to 1. The true value of model 
parameters in all cases is set to .6. For a given underlying 
model and a specification of the sizes, locations, and types 
of the outliers, 500 series of length 100 are generated using 
the SCA Statistical System (Liu, Hudak, Box, Muller, and 
Tiao 1986). The procedure using the omit-one method for 
estimating the residual standard deviation is applied to each 
of the 500 series using six different critical values: C = 2.25, 
2.5, 2.75, 3.0, 3.25, and 3.5. 

The relative frequency of correct detection and the fre- 
quency of Type I errors are reported in Table 3. Because the 

Table 2. List of Cases in the Performance Study 

Case Model Location & size of AO Case Model Location & size of AO 

1 AR(1) t1 = 40 w =3 10 AR(1) t1 = 40 w = 3 t2 = 41 W2 = 4 
2 MA(1) t1 = 40 co 3 11 AR(1) t, = 10 wi = 4 t2 = 11 W2 3 
3 IMA(0, 1, 1) t1 = 40 w =3 12 AR(1) t1 = 99 w, = 4 t2 = 100 w2 -3 
4 AR(1) t1 = 40 o =4 13 IMA(0, 1, 1) t1 = 40 co, = 3 t2 = 41 2 4 
5 MA(1) t1 = 40 = 4 14 IMA(0, 1,1) tl = 10 w1 = 4 t2 = 15 W2 = 3 
6 IMA(0, 1, 1) t1 = 40 = 4 15 IMA(0, 1, 1) t, = 96 wc = 4 t2 = 98 C02 = 3 
7 AR(1) t1 = 40 =o 5 16 Seasonal IMA t1 = 40 c1 = 4 t2 = 44 2 4 
8 MA(1) t1 = 40 1 5 17 Seasonal IMA t1 = 10 w1 = 3 t2 = 12 W2 4 
9 IMA(0, 1, 1) t, = 40 co, = 5 18 Seasonal IMA t, = 96 co, = 3 t2 = 97 W2 = 4 
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Table 3. Summary of the Detection Performance 

C= 2.25 2.50 2.75 3.00 3.25 3.50 C= 2.25 2.50 2.75 3.00 3.25 3.50 

Case AO Case TC 

1 P .89 .83 .75 .64 .54 .40 1 P .81 .70 .59 .49 .37 .28 
2 P .50 .60 .62 .54 .46 .37 2 P .64 .74 .78 .79 .79 .78 
3 P .88 .80 .70 .62 .52 .40 3 P .87 .80 .70 .61 .50 .41 
4 P .99 .97 .96 .93 .88 .81 4 P .96 .93 .89 .83 .74 .64 
5 P .62 .81 .86 .88 .86 .80 5 P .68 .76 .81 .83 .83 .83 
6 P .99 .98 .95 .92 .87 .80 6 P .99 .98 .95 .92 .85 .79 
7 P 1.00 1.00 1.00 .99 .99 .98 7 P 1.00 1.00 .99 .98 .96 .91 
8 P .69 .87 .94 .97 .97 .96 8 P .71 .77 .80 .80 .80 .80 
9 P 1.00 .99 .99 .99 .98 .97 9 P 1.00 1.00 .99 .99 .98 .97 

1 E 4.2 1.8 .7 .3 .1 .1 1 E 5.1 2.2 .9 .4 .1 .1 
2 E 2.1 1.2 .5 .2 .1 .0 2 E .8 .4 .2 .1 .0 .0 
3 E 4.8 1.9 .8 .3 .1 .0 3 E 4.0 1.8 .8 .3 .1 .0 
4 E 4.3 1.8 .7 .3 .1 .0 4 E 5.4 2.4 1.0 .5 .2 .1 
5 E 2.1 1.3 .6 .3 .1 .0 5 E .9 .4 .2 .1 .0 .0 
6 E 5.0 1.9 .8 .3 .1 .0 6 E 4.1 1.8 .8 .4 .2 .1 
7 E 4.3 1.8 .8 .3 .1 .1 7 E 5.3 2.3 1.0 .5 .2 .1 
8 E 2.3 1.3 .6 .3 .1 .0 8 E .8 .4 .1 .1 .0 .0 
9 E 5.0 2.1 .8 .3 .1 .1 9 E 4.2 1.8 .8 .4 .1 .1 

/0 LS 

1 P .83 .72 .60 .49 .39 .29 1 P .69 .55 .36 .22 .10 .04 
2 P .83 .71 .60 .49 .37 .28 2 P .54 .49 .51 .56 .52 .51 
3 P .85 .76 .66 .55 .46 .32 3 P .70 .78 .75 .66 .55 .47 
4 P .98 .95 .89 .83 .76 .66 4 P .93 .87 .77 .62 .48 .33 
5 P .97 .93 .90 .84 .77 .65 5 P .69 .66 .65 .63 .67 .69 
6 P .97 .94 .91 .85 .74 .66 6 P .85 .93 .93 .92 .87 .83 
7 P 1.00 .99 .99 .97 .95 .93 7 P .99 .97 .94 .89 .82 .71 
8 P 1.00 1.00 .98 .97 .95 .91 8 P .76 .75 .75 .74 .69 .72 
9 P 1.00 .99 .98 .96 .94 .91 9 P .90 .98 .99 .99 .98 .98 

1 E 5.3 2.2 .8 .4 .1 .0 1 E .7 .4 .1 .1 .0 .0 
2 E 4.9 2.1 .8 .3 .1 .0 2 E .7 .6 .5 .5 .3 .2 
3 E 4.9 2.0 .8 .3 .1 .0 3 E 2.8 1.4 .5 .2 .1 .0 
4 E 5.D 2.1 .9 .4 .2 .0 4 E .8 .4 .2 .1 .0 .0 
5 E 4.9 2.2 1.0 .4 .1 .1 5 E .7 .7 .6 .4 .4 .3 
6 E 4.9 2.1 .9 .4 .1 .1 6 E 3.0 1.5 .6 .3 .1 .0 
7 E 5.2 2.3 1.0 .4 .2 .1 7 E 1.0 .6 .3 .2 .1 .0 
8 E 5.2 2.2 .9 .4 .2 .1 8 E .7 .6 .6 .5 .4 .4 
9 E 4.9 2.0 .9 .4 .2 .1 9 E 3.0 1.5 .7 .3 .1 .0 

NOTE: P refers to the relative frequency of correct detection, and E refers to the average number of misidentified outliers in a series of length 100. 

effects of neighboring outliers may be approximated by a 
combination of various consecutive outliers, the power study 
for such situations is more complicated. Here we report only 
the results of the power study for cases with a single outlier. 
The rows labelled "P" in this table summarize the relative 
frequency of correct detection, defined as a correct identi- 
fication of both type and location of an outlier. The relative 
frequency of correct detection can be interpreted as the power 
of the procedure in terms of outlier detection. For most cases, 
the power is a decreasing function of the critical value. There 
are exceptions, however, when the critical value C = 2.25 is 
used. Examining the detailed detection record (not reported 
here), we found that when the critical value is too low, there 
is a higher frequency to misidentify the location of an outlier 
by one time period. This is due to the high correlation be- 
tween neighboring test statistics. For critical values 2.75 and 
3.0, the power of the procedure for detecting outliers of size 
3 standard deviation (a,) ranges between 50% and 60%, and 
that for detecting outliers of sizes 4 and 5 standard deviation 
ranges between 85% and 99%. 

The rows labeled "E" in Table 3 report the average num- 

-ber of misidentified outliers (i.e., the number of observations 
in a series that are identified as outliers while they are not 
outliers) in a series of length 100. These results indicate the 
frequency of Type I errors in the detection procedure. This 
is different from the Type I errors of the test statistics studied 
in the previous section. In the latter simulation, because the 
procedure allows for checking the significance of the esti- 
mated outlier effects jointly, it generates a lower frequency 
of Type I errors. We find that the frequency of misidentifi- 
cation is also a decreasing function of the specified critical 
value. For critical values 2.75 and 3.0, the average number 
of misidentified outliers in a series of length 100 is less than 
1. This finding further validates the guidelines for critical 
value selection provided in Section 3.1. 

To investigate the impact of outlier adjustment on param- 
eter estimation, we compute the estimates using the standard 
ARIMA model and the intervention model, which incor- 
porates the information of outlier type and location. Table 
4 summarizes the estimation results of this simulation study, 
including the sample mean and sample RMSE of the model 
parameter estimates and the residual standard deviation es- 
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Table 4. Summary of the Estimation Performance 

AO ITV C 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA TC ITV C 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA 

Case # 1 Case # 1 

PHI .577 .636 .603 .586 .575 .568 .562 .540 PHI .569 .489 .531 .554 .563 .568 .569 .576 
RMSE1 .090 .104 .094 .092 .094 .095 .096 .109 RMSE1 .093 .203 .147 .117 .103 .096 .094 .087 
SIGMA .964 .739 .856 .923 .966 .990 1.014 1.097 SIGMA .964 .700 .833 .918 .963 .994 1.013 1.071 
RMSE2 .137 .305 .210 .170 .151 .148 .151 .179 RMSE2 .138 .349 .245 .184 .164 .153 .152 .162 

Case #2 Case #2 

THETA .639 .966 .825 .702 .652 .631 .613 .556 THETA .637 .790 .698 .653 .644 .634 .631 .304 
RMSE1 .108 .498 .378 .238 .171 .154 .134 .102 RMSE1 .104 .382 .235 .151 .142 .126 .131 .304 
SIGMA .965 .732 .815 .912 .966 .995 1.016 1.112 SIGMA .963 .911 .932 .956 .965 .972 .975 1.359 
RMSE2 .148 .355 .269 .201 .177 .172 .172 .200 RMSE2 .145 .205 .164 .153 .148 .146 .147 .401 

Case #3 Case #3 

THETA .618 .537 .578 .598 .607 .612 .616 .624 THETA .622 .649 .634 .619 .612 .604 .601 .580 
RMSE1 .095 .144 .112 .100 .094 .092 .093 .088 RMSE1 .095 .124 .112 .103 .096 .092 .092 .092 
SIGMA .972 .715 .848 .923 .964 .992 1.012 1.116 SIGMA .965 .736 .841 .909 .957 .988 1.009 1.108 
RMSE2 .139 .332 .224 .178 .157 .155 .157 .195 RMSE2 .144 .313 .231 .187 .163 .161 .163 .189 

Case #4 Case #4 

PHI .573 .635 .602 .585 .576 .571 .566 .514 PHI .578 .497 .540 .561 .568 .574 .576 .589 
RMSE1 .091 .098 .090 .089 .091 .092 .096 .124 RMSE1 .088 .193 .138 .111 .100 .093 .091 .082 
SIGMA .953 .729 .843 .905 .939 .959 .975 1.175 SIGMA .975 .687 .820 .903 .950 .985 1.009 1.155 
RMSE2 .143 .317 .223 .174 .158 .153 .150 .239 RMSE2 .146 .357 .250 .196 .172 .164 .171 .229 

Case #5 Case #5 

THETA .639 .963 .802 .722 .678 .659 .650 .512 THETA .643 .755 .678 .651 .642 .637 .636 .206 
RMSE1 .112 .506 .351 .259 .197 .175 .174 .126 RMSE1 .106 .382 .253 .185 .145 .131 .125 .399 
SIGMA .965 .739 .819 .891 .933 .955 .972 1.211 SIGMA .956 1.028 .969 .970 .977 .981 .982 1.560 
RMSE2 .142 .333 .252 .202 .172 .164 .169 .269 RMSE2 .140 .966 .164 .157 .149 .147 .146 .597 

Case #6 Case #6 

THETA .616 .525 .573 .591 .600 .606 .609 .638 THETA .618 .639 .628 .617 .610 .607 .603 .563 
RMSE1 .094 .153 .116 .100 .095 .092 .092 .091 RMSE1 .100 .127 .120 .108 .104 .101 .102 .103 
SIGMA .975 .707 .849 .913 .951 .973 .989 1.208 SIGMA .967 .729 .836 .900 .939 .964 .982 1.195 
RMSE2 .143 .342 .230 .185 .159 .158 .157 .270 RMSE2 .150 .324 .239 .192 .170 .165 .162 .261 

Case #7 Case #7 

PHI .581 .643 .614 .596 .587 .582 .580 .489 PHI .570 .488 .523 .548 .558 .563 .567 .599 
RMSE1 .086 .099 .090 .085 .085 .086 .087 .145 RMSE1 .091 .200 .154 .124 .108 .101 .095 .082 
SIGMA .947 .724 .834 .894 .928 .945 .953 1.289 SIGMA .957 .677 .805 .879 .922 .946 .963 1.224 
RMSE2 .144 .321 .233 .185 .164 .153 .147 .339 RMSE2 .141 .358 .253 .193 .165 .150 .149 .280 

Case #8 Case #8 

THETA .626 .925 .768 .695 .659 .646 .639 .464 THETA .637 .692 .646 .631 .630 .627 .625 .117 
RMSE1 .100 .481 .317 .224 .165 .148 .143 .162 RMSE1 .111 .365 .234 .175 .146 .146 .141 .488 
SIGMA .961 .756 .844 .903 .931 .946 .956 1.317 SIGMA .958 1.048 1.002 1.003 1.002 1.009 1.011 1.769 
RMSE2 .148 .332 .256 .214 .187 .163 .159 .368 RMSE2 .149 .290 .218 .192 .182 .182 .182 .802 

Case #9 Case #9 

THETA .620 .529 .572 .593 .601 .605 .606 .655 THETA .624 .645 .632 .625 .618 .615 .612 .546 
RMSE1 .096 .146 .115 .104 .095 .094 .090 .098 RMSE1 .098 .125 .113 .103 .097 .097 .095 .114 
SIGMA .969 .703 .827 .903 .939 .956 .966 1.302 SIGMA .964 .727 .838 .895 .928 .951 .962 1.311 
RMSE2 .146 .343 .241 .182 .161 .154 .152 .355 RMSE2 .140 .321 .231 .185 .164 .151 .149 .361 

Case #10 Case #10 

PHI .579 .533 .536 .553 .560 .563 .562 .562 PHI .571 .543 .546 .556 .566 .568 .573 .576 
RMSE1 .087 .153 .155 .128 .112 .101 .096 .087 RMSE1 .088 .135 .137 .122 .104 .097 .091 .080 
SIGMA .970 .559 .688 .859 .951 1.014 1.061 1.180 SIGMA .954 .557 .676 .820 .910 .957 .995 1.309 
RMSE2 .137 .455 .361 .241 .192 .177 .181 .234 RMSE2 .148 .459 .374 .261 .196 .179 .173 .361 

Case #11 Case #11 

PHI .574 .452 .477 .518 .537 .548 .552 .416 PHI .566 .499 .522 .541 .552 .557 .559 .504 
RMSE1 .092 .211 .195 .157 .131 .117 .112 .212 RMSE1 .091 .171 .148 .124 .111 .105 .103 .133 
SIGMA .959 .556 .670 .808 .904 .960 .995 1.415 SIGMA .953 .547 .672 .805 .904 .957 .991 1.231 
RMSE2 .151 .460 .380 .273 .213 .181 .168 .459 RMSE2 .142 .468 .376 .268 .193 .165 .162 .288 

Case #12 Case #12 

PHI .569 .462 .491 .526 .546 .559 .566 .439 PHI .577 .517 .539 .560 .568 .572 .574 .516 
RMSE1 .089 .198 .179 .143 .120 .107 .100 .191 RMSE1 .089 .162 .149 .117 .104 .098 .095 .123 
SIGMA .957 .551 .669 .816 .904 .950 .988 1.393 SIGMA .967 .543 .684 .829 .908 .944 .968 1.205 
RMSE2 .144 .463 .375 .262 .199 .167 .155 .437 RMSE2 .145 .473 .365 .250 .194 .176 .164 .270 

Case #13 Case #13 

THETA .624 .711 .710 .673 .638 .626 .619 .603 THETA .617 .679 .692 .655 .627 .616 .610 .566 
RMSE1 .098 .183 .189 .155 .1 15 .104 .097 .095 RMSE1 .095 .165 .176 .140 .1 14 .104 .097 .104 
SIGMA .968 .500 .614 .788 .912 .971 1.021 1.251 SIGMA .957 .508 .595 .748 .865 .933 .983 1.400 
RMSE2 .147 .510 .431 .303 .204 .185 .183 .310 RMSE2 .143 .503 .456 .316 .230 .187 .166 .444 

(continued) 

This content downloaded from 143.107.90.10 on Fri, 24 Apr 2015 20:13:35 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Chen and Liu: Joint Model Parameter and Outlier Estimation in Time Series 293 

Table 4. (continued) 

AO ITV C =2.25 2.50 2.75 3.00 3.25 3.50 ARIMA TC ITV C= 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA 

Case #14 Case #14 

THETA .623 .757 .760 .704 .667 .649 .642 .666 THETA .623 .701 .706 .670 .637 .626 .620 .585 
RMSE1 .100 .207 .225 .189 .157 .132 .118 .105 RMSE1 .096 .166 .182 .156 .120 .108 .103 .085 
SIGMA .966 .501 .575 .740 .864 .938 1.003 1.298 SIGMA .960 .519 .599 .763 .880 .946 .996 1.289 
RMSE2 .140 .511 .455 .323 .233 .193 .188 .344 RMSE2 .143 .500 .437 .307 .209 .182 .183 .342 

Case #15 Case #15 

THETA .612 .737 .732 .679 .643 .629 .627 .646 THETA .619 .691 .701 .656 .633 .620 .616 .579 
RMSE1 .093 .193 .200 .161 .119 .101 .096 .093 RMSE1 .095 .162 .186 .144 .114 .105 .100 .099 
SIGMA .960 .497 .592 .756 .887 .968 1.025 1.260 SIGMA .974 .522 .604 .783 .895 .967 1.017 1.314 
RMSE2 .150 .512 .446 .320 .229 .199 .194 .314 RMSE2 .149 .492 .431 .286 .211 .180 .189 .365 

Case #16 Case #16 

THETA .615 .651 .644 .630 .619 .619 .621 .652 THETA .625 .613 .616 .615 .607 .603 .599 .573 
RMSE1 .101 .115 .115 .106 .101 .100 .104 .095 RMSE1 .101 .107 .109 .105 .101 .099 .098 .094 
SIGMA .971 .531 .634 .801 .915 1.000 1.059 1.348 SIGMA .967 .543 .639 .799 .909 .982 1.032 1.462 
RMSE2 .148 .482 .409 .286 .224 .193 .206 .397 RMSE2 .153 .470 .405 .278 .209 .189 .202 .504 

Case #17 Case #17 

THETA .623 .660 .650 .635 .627 .624 .623 .676 THETA .622 .590 .601 .604 .604 .604 .605 .506 
RMSE1 .095 .128 .122 .115 .106 .102 .102 .115 RMSE1 .102 .132 .131 .116 .114 .109 .108 .159 
SIGMA .963 .525 .615 .755 .863 .931 .971 1.619 SIGMA .963 .576 .659 .785 .859 .909 .942 1.840 
RMSE2 .145 .489 .422 .305 .222 .182 .181 .653 RMSE2 .145 .467 .404 .284 .216 .184 .172 .874 

Case #18 Case #18 

THETA .623 .617 .622 .622 .622 .622 .624 .579 THETA .612 .622 .622 .615 .612 .611 .611 .576 
RMSE1 .098 .127 .121 .112 .105 .099 .098 .132 RMSE1 .097 .133 .130 .126 .118 .109 .104 .140 
SIGMA .966 .524 .638 .790 .899 .962 1.003 1.398 SIGMA .963 .518 .612 .761 .863 .925 .969 1.570 
RMSE2 .148 .489 .405 .285 .208 .177 .168 .442 RMSE2 .149 .494 .423 .303 .224 .190 .175 .608 

1O ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA LS ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA 

Case #1 Case #1 

PHI .577 .565 .569 .570 .572 .575 .575 .574 PHI .566 .654 .692 .732 .763 .788 .799 .808 
RMSE1 .081 .111 .098 .091 .086 .082 .082 .079 RMSE1 .095 .129 .147 .171 .189 .202 .208 .213 
SIGMA .962 .696 .835 .921 .966 .996 1.016 1.071 SIGMA .951 .969 1.019 1.080 1.124 1.161 1.180 1.196 
RMSE2 .148 .345 .242 .187 .168 .161 .160 .169 RMSE2 .151 .166 .183 .213 .234 .251 .257 .263 

Case #2 Case #2 

THETA .631 .644 .634 .631 .631 .631 .630 .625 THETA .657 .296 .295 .315 .322 .289 .264 -.248 
RMSE1 .105 .162 .134 .121 .108 .105 .104 .096 RMSE1 .117 .429 .441 .443 .406 .443 .460 .850 
SIGMA .958 .697 .828 .907 .955 .986 1.003 1.064 SIGMA .956 1.750 1.735 1.610 1.504 1.521 1.553 3.139 
RMSE2 .147 .348 .245 .191 .173 .164 .165 .169 RMSE2 .147 1.373 1.254 .993 .708 .818 .775 2.165 

Case #3 Case #3 

THETA .625 .614 .608 .612 .612 .612 .612 .606 THETA .632 .820 .707 .645 .618 .602 .588 .534 
RMSE1 .101 .118 .100 .101 .093 .091 .090 .085 RMSE1 .107 .297 .201 .144 .122 .117 .109 .113 
SIGMA .958 .704 .834 .910 .955 .979 1.008 1.083 SIGMA .954 .947 .884 .921 .953 .978 .997 1.114 
RMSE2 .145 .335 .230 .184 .164 .156 .159 .176 RMSE2 .142 .698 .302 .195 .160 .158 .158 .191 

Case #4 Case #4 

PHI .568 .561 .562 .562 .564 .564 .565 .569 PHI .560 .676 .686 .698 .723 .746 .776 .862 
RMSE1 .086 .109 .098 .094 .089 .089 .089 .084 RMSE1 .096 .145 .151 .167 .184 .199 .218 .264 
SIGMA .964 .712 .837 .909 .950 .976 .999 1.139 SIGMA .964 .975 1.010 1.046 1.094 1.133 1.183 1.319 
RMSE2 .142 .335 .235 .189 .162 .160 .161 .208 RMSE2 .151 .176 .185 .214 .248 .279 .312 .372 

Case #5 Case #5 

THETA .624 .638 .629 .626 .622 .622 .622 .617 THETA .660 .299 .278 .268 .264 .246 .217 -.360 
RMSE1 .099 .166 .136 .115 .105 .104 .102 .098 RMSE1 .122 .426 .440 .467 .511 .497 .483 .962 
SIGMA .962 .695 .819 .888 .937 .968 .991 1.136 SIGMA .956 1.823 1.834 1.829 1.818 1.645 1.677 4.130 
RMSE2 .149 .348 .253 .199 .169 .161 .166 .212 RMSE2 .137 1.599 1.427 1.287 1.238 .869 .892 3.155 

Case #6 Case #6 

THETA .620 .608 .604 .604 .604 .605 .604 .603 THETA .627 .795 .697 .646 .623 .607 .598 .485 
RMSE1 .097 .110 .104 .102 .095 .092 .091 .086 RMSE1 .103 .274 .186 .128 .101 .101 .102 .143 
SIGMA .952 .699 .820 .890 .932 .963 .985 1.141 SIGMA .963 .929 .885 .921 .940 .964 .979 1.216 
RMSE2 .144 .342 .244 .189 .167 .159 .163 .210 RMSE2 .142 .717 .360 .234 .160 .155 .158 .277 

Case #7 Case #7 

PHI .571 .561 .565 .567 .567 .568 .569 .569 PHI .567 .710 .708 .695 .692 .697 .707 .895 
RMSE1 .088 .108 .101 .093 .090 .089 .086 .083 RMSE1 .094 .166 .175 .168 .166 .174 .183 .296 
SIGMA .957 .694 .814 .891 .929 .952 .964 1.226 SIGMA .964 .968 1.000 1.015 1.036 1.055 1.087 1.419 
RMSE2 .1 51 .348 .253 .1 97 .1 73 .1 63 .1 65 .289 R MSE2 .144 .1 63 .1 62 .167 .1 96 .217 .250 .466 

(continued) 
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Table 4. (continued) 

10 ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA LS ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA 

Case #8 Case #8 

THETA .636 .643 .633 .635 .634 .633 .634 .622 THETA .662 .250 .279 .257 .238 .237 .214 -.438 
RMSE1 .101 .145 .113 .119 .110 .110 .110 .086 RMSE1 .132 .486 .467 .463 .494 .555 .552 1.040 
SIGMA .965 .691 .823 .893 .932 .955 .970 1.228 SIGMA .967 2.016 1.924 1.940 1.970 1.939 1.837 5.277 
RMSE2 .145 .350 .248 .195 .168 .158 .159 .279 RMSE2 .148 1.960 1.817 1.497 1.562 1.602 1.151 4.308 

Case #9 Case #9 

THETA .614 .602 .601 .602 .601 .601 .600 .600 THETA .642 .804 .706 .662 .641 .632 .626 .447 
RMSE1 .099 .121 .102 .100 .093 .092 .092 .090 RMSE1 .111 .284 .184 .132 .110 .103 .096 .172 
SIGMA .957 .701 .823 .888 .926 .944 .960 1.236 SIGMA .962 .953 .882 .911 .943 .965 .972 1.347 
RMSE2 .154 .341 .243 .195 .174 .167 .168 .300 RMSE2 .142 .866 .356 .196 .178 .270 .270 .389 

Case #10 Case #10 

PHI .579 .533 .536 .553 .560 .563 .562 .562 PHI .551 .740 .745 .770 .796 .810 .808 .775 
RMSE1 .087 .153 .155 .128 .112 .101 .096 .087 RMSE1 .101 .171 .178 .197 .212 .217 .214 .183 
SIGMA .970 .559 .688 .859 .951 1.014 1.061 1.180 SIGMA .944 .696 .815 .945 1.046 1.112 1.153 1.462 
RMSE2 .137 .455 .361 .241 .192 .177 .181 .234 RMSE2 .149 .385 .333 .241 .216 .226 .249 .502 

Case #11 Case #11 

PHI .574 .452 .477 .518 .537 .548 .552 .416 PHI .564 .782 .770 .757 .746 .738 .733 .692 
RMSE1 .092 .211 .195 .157 .131 .117 .112 .212 RMSE1 .093 .196 .186 .171 .159 .152 .147 .111 
SIGMA .959 .556 .670 .808 .904 .960 .995 1.415 SIGMA .962 .626 .775 .939 1.046 1.103 1.138 1.332 
RMSE2 .151 .460 .380 .273 .213 .181 .168 .459 RMSE2 .142 .400 .315 .222 .201 .213 .235 .379 

Case #12 Case #12 

PHI .569 .462 .491 .526 .546 .559 .566 .439 PHI .569 .525 .535 .552 .563 .565 .564 .541 
RMSE1 .089 .198 .179 .143 .120 .107 .100 .191 RMSE1 .092 .149 .144 .117 .104 .097 .098 .106 
SIGMA .957 .551 .669 .816 .904 .950 .988 1.393 SIGMA .967 .540 .671 .812 .900 .945 .971 1.164 
RMSE2 .144 .463 .375 .262 .199 .167 .155 .437 RMSE2 .146 .477 .381 .264 .203 .177 .166 .238 

Case #13 Case #13 

THETA .618 .701 .715 .669 .634 .619 .615 .589 THETA .637 .658 .677 .650 .628 .617 .613 .542 
RMSE1 .100 .173 .197 .155 .125 .102 .100 .098 RMSE1 .115 .155 .186 .151 .120 .103 .101 .119 
SIGMA .959 .510 .612 .781 .884 .953 .990 1.285 SIGMA .958 .518 .609 .771 .879 .949 .985 1.426 
RMSE2 .153 .501 .481 .315 .225 .188 .176 .339 RMSE2 .146 .494 .436 .305 .212 .171 .159 .471 

Case #14 Case #14 

THETA .618 .716 .726 .679 .642 .627 .622 .617 THETA .632 .638 .666 .644 .627 .614 .607 .498 
RMSE1 .101 .171 .201 .158 .131 .109 .103 .083 RMSE1 .109 .135 .171 .144 .121 .105 .108 .128 
SIGMA .960 .507 .590 .746 .865 .938 .985 1.267 SIGMA .969 .537 .627 .780 .886 .952 .996 1.358 
RMSE2 .139 .501 .448 .314 .225 .182 .182 .316 RMSE2 .146 .477 .428 .290 .211 .181 .188 .404 

Case #15 Case #15 

THETA .621 .714 .723 .679 .641 .627 .626 .599 THETA .633 .629 .659 .645 .628 .621 .618 .471 
RMSE1 .098 .183 .200 .159 .119 .103 .099 .085 RMSE1 .103 .137 .162 .139 .119 .107 .106 .156 
SIGMA .960 .514 .595 .766 .889 .956 .998 1.265 SIGMA .953 .524 .612 .768 .884 .940 .978 1.364 
RMSE2 .147 .497 .436 .304 .209 .184 .178 .323 RMSE2 .149 .488 .424 .298 .211 .179 .178 .407 

Case #16 Case #16 

THETA .628 .652 .644 .632 .624 .619 .616 .652 THETA .627 .593 .600 .597 .594 .587 .578 .511 
RMSE1 .105 .119 .114 .109 .101 .095 .092 .098 RMSE1 .108 .114 .116 .110 .110 .109 .115 .130 
SIGMA .963 .523 .624 .778 .884 .942 .978 1.524 SIGMA .961 .547 .629 .778 .893 .960 1.015 1.566 
RMSE2 .150 .492 .416 .292 .210 .181 .167 .565 RMSE2 .145 .468 .406 .292 .209 .184 .193 .606 

Case #17 Case #17 

THETA .620 .643 .637 .623 .616 .610 .609 .638 THETA .631 .590 .606 .613 .614 .612 .610 .486 
RMSE1 .103 .119 .115 .102 .097 .094 .093 .099 RMSE1 .100 .123 .121 .110 .104 .102 .097 .172 
SIGMA .967 .524 .623 .774 .885 .954 .988 1.531 SIGMA .969 .563 .660 .784 .877 .933 .964 1.888 
RMSE2 .149 .492 .423 .306 .218 .181 .171 .569 RMSE2 .147 .470 .398 .288 .205 .175 .168 .919 

Case #18 Case #18 

THETA .628 .636 .634 .623 .619 .616 .615 .600 THETA .617 .611 .618 .617 .613 .611 .612 .544 
RMSE1 .100 .119 .117 .106 .102 .093 .092 .095 RMSE1 .098 .120 .120 .108 .100 .091 .089 .133 
SIGMA .958 .517 .624 .792 .902 .962 1.004 1.285 SIGMA .973 .522 .626 .776 .882 .950 .991 1.559 
RMSE2 .144 .495 .414 .278 .200 .178 .171 .333 RMSE2 .152 .490 .413 .298 .225 .187 .178 .599 

ITV: intervention model fitting; ARIMA: traditional ARIMA fitting; RMSE1: RMSE of the estimated model parameters; RMSE2: RMSE of the estimated residual standard deviations. 

timates over the 500 series. For each case and each type of 
outliers, there are eight sets of statistics, six of them associated 
with six different critical values, one with the intervention 
model (labeled as ITV), and the other with the usual ARIMA 
model without outlier adjustment (labelled ARIMA). The 
results associated with the intervention model may be re- 
garded as the best estimate in the sense that the correct in- 

formation of outliers has been used. The usual ARIMA es- 
timates are obtained without allowing for any outliers in the 
series. These estimates correspond to applying the proposed 
detection procedure with a critical value of infinity for outlier 
detection. The estimates associated with finite critical values 
can be interpreted as outcomes of the procedure allowing 
for various degrees of model perturbation in the form of 
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model (19). Examining the results presented in Table 4, we 
find that the AO, TC, and LS outliers may cause substantial 
bias in the estimation of model parameters, but the IO effect 
seems to be less serious on the model parameter estimates. 
It is not surprising to find that estimates of residual standard 
deviation are sensitive to all types of outliers, and the pro- 
posed procedure successfully obtains a more unbiased esti- 
mate of the residual standard deviation. It is found that AO 
and TC outliers occurring at the beginning and at the end 
of the series (cases 11, 12, 14, 15, 17, and 18) produce higher 
RMSE in the ARIMA estimates than do outliers in the mid- 
dle of the series. This finding suggests that outliers at the 
beginning and at the end of the series are more important 
in terms of their impact. When the critical values are too 
small (e.g., C = 2.25 and C = 2.5 in this study), the procedure 
tends to overadjust the series and produce unsatisfactory re- 
sults. When the critical values are gradually increased to a 
proper level, we observe that the estimates become more 
stable and more consistent with those obtained from the 
intervention models. But if the critical value is too large, 
fewer or no outliers will be detected and the results will be 
very close to those of usual ARIMA estimates. We find that 
in most cases there is a range of critical values with which 
the procedure produces comparable improvements on the 
parameter estimates and RMSE's with respect to the inter- 
vention model. In practice it is useful to use the proposed 
procedure on data subsets with a range of critical values. 
This may help reveal structural changes other than those 
discussed in this article. To obtain better understanding of 
the outlier effects, it is very informative to plot the adjusted 
series as well as the actual observed series. 

The cases of an LS outlier in an MA(1) (cases 2, 5, and 
8) require some explanation. The empirical distribution of 
the parameter estimates in this case is bimodal, with one 
mode near -.4 and the other mode near .5. The former is 
associated with situations in which the procedure fails to 
detect the LS outlier, and the latter corresponds to situations 
in which the LS outlier is successfully detected and adjusted. 
This is the reason that the sample mean of the parameter 
estimates is biased toward 0. These cases also indicate that 
the procedure may be less effective when the initial fitted 
model departs substantially from the true model. 

4. AN ILLUSTRATIVE EXAMPLE 

Here we consider the analysis of the variety store series 
discussed in Hillmer et al. (1983). In this example we dem- 
onstrate (a) the detailed steps of the new procedure, (b) the 
improvement provided by the new procedure, and (c) the 
comparison between estimates obtained from the interven- 
tion model incorporating the outliers and those from the 
proposed joint estimation procedure. 

The data analyzed here are the time series of the log-trans- 
formed monthly retail sales of variety stores after the ad- 
justment for trading day and holiday effects. The series begins 
in January 1967 and ends in September 1979. The plot of 
the series was given in Hillmer et al. (1983) . A strong seasonal 
pattern and a level drop during 1976 can be found in the 
time series plot. Hillmer et al. (1983) used this series to il- 
lustrate the application of an iterative outlier detection pro- 

cedure developed in Chang (1982). The following ARIMA 
model is found to be appropriate for the observed series: 

_771 (1 - 012B'12) (1 - (1 - - B 2B 2) at. (21) 

To contrast the results between the procedure described in 
this article and that used by Hillmer et al. (1983), only the 
AO and 10 types are considered in the first part of the anal- 
ysis. Table 5 summarizes the results using the 5% trimmed 
method to estimate the residual standard deviation. The re- 
sults obtained using the other two methods (the omit-one 
and the MAD methods) are quite similar and are not reported 
here. The critical value C = 3.0 is used to detect outliers. 

Table 5 is organized in three panels to provide the main 
results from each stage of the iterative procedure. The top 
panel summarizes the results of estimation and detection 
from iteration 1 to iteration 3 in Stage I. The procedure in 
this stage detects a total of six outliers. The middle panel 
covers Stage II, at which outlier effects are jointly estimated 
and the insignificant ones removed. In this case, outliers de- 
tected at t = 103 and t = 73 are not significant for the critical 
value C = 3.0 and are hence removed. The final estimates, 
reported in the row labelled 11.4, are obtained based on the 
series adjusted for the effects of the four outliers. The bottom 
panel reports on Stage III, during which the detection pro- 
cedure is run again without reestimating the model param- 
eters. Nine outliers are detected in the intermediate steps. 
However, after joint estimation of the outlier effects, only 
six outliers are considered significant, and the final results 
are reported at the last step of 111.2. Similar results are ob- 
tained using the MAD and the omit-one methods. The only 
major difference is the outcome in the intermediate steps of 
outlier detection. The 5% trimmed method tends to identify 
more outliers in the intermediate steps, but the step involving 
joint estimation of outlier effects successfully removes the 
spurious outliers. 

Applying the procedure considered in Hillmer et al. 
(1983), nine outliers are identified during six iterations of 
model estimation. Their outlier detection results are closely 
compatible with those obtained in the intermediate iterations 
of stage I and III in the new procedure, but their final results 
are different from those obtained from the new procedure- 
particularly the estimate for 012 (612 = .89 in Hillmer et al. 
versus b12 = .62 using the new procedure). 

To overcome potential misidentification of outliers, we 
now consider all four types of outliers, 10, AO, LS, and TC. 
The joint estimates of model parameters and outlier effects 
using the new procedure are listed below (numbers in pa- 
rentheses are the t values of the estimates): 

012 = .7128, X1 = -.6871, 2 =-.4617, aa=.02404. 
(12.84) (-9.08) (-6.11) 

Outlier Estimate t Value Type 

t =45 .094 5.19 TC 
t= 96 -.083 -4.36 AG 
t= 112 -.176 -10.20 LS 

These estimates are obtained using the 5% trimmed method 
for estimating the residual standard deviation. When the 
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Table 5. Parameter Estimation: The 5% Trimmed Method With Outlier Types AO and 10 

111. 1 
1.1 (Iteration 1) Inner Loop (1.2 and 1.3) 

012 01 102 aa Time Estimate t Value Type 

.8407 -.3969 -.2673 .02501 112 -.15 -5.98 10 
96 -.08 -3.83 AO (17.12) (-4.83) (-3.26) 113 -.09 -3.60 10 
45 .08 3.39 10 

103 -.07 -3.30 AO 

1.1 (Iteration 2) Inner Loop (1.2 and 1.3) 

.7040 -.5616 -.3361 .024653 Time Estimate t Value Type 

(12.28) (-6.97) (-4.18) 73 .07 2.67 10 

1.1 (Iteration 3) Inner Loop (1.2 and 1.3) 

.6864 -.5409 -.3161 No outlier detected 

(11.82) (-6.65) (-3.90) 

11.1-11.3 (Joint Estimation of Outlier Effect) 

Time Estimate t Value Type 

45 .091 3.30 10 
96 -.079 -3.63 AO 

112 -.150 -5.46 10 
113 -.121 -4.39 10 

11.4 (Final Estimation) 

012 ki 02 aa 

.6202 -.6062 -.3828 .02656 

(9.65) (-7.67) (-4.86) 

111.2, Step I (Outlier Detection Based on Final Parameter Estimates) 

Iteration 1 (Inner Loop) Iteration 2 (Inner Loop) 

Time Estimate t Value Type Time Estimate t Value Type 

112 -.15 -5.58 10 103 -.05 -2.83 AO 
113 -.13 -5.08 10 73 .07 2.67 10 
96 -.08 -3.83 AO 136 .07 2.65 10 
45 .09 3.54 10 Iteration 3 (Inner Loop) 

124 .08 3.19 10 
114 -.08 -3.16 10 No outlier detected 

111.2, Step 11 (Final Results of Outlier Detection) 

Time Estimate t Value Type 

45 .094 3.54 10 
96 -.079 -3.83 AO 

112 -.148 -5.58 10 
113 -.135 -5.08 10 
114 -.084 -3.16 10 
124 .085 3.19 10 

omit-one and the MAD methods are used, the results are 
similar except for some minor differences on the parameter 
estimates. It is useful to note that by allowing for a more 
complete set of outliers, we obtain fewer but more meaningful 
outliers. In addition, the estimated standard deviation is re- 
duced to &a = .02404 (compared with &a = .02667 when 
only AO and 10 are considered). 

Based on the preceding results, we can explicitly incor- 
porate the outlier effects in model (21) and estimate the fol- 
lowing intervention model: 

VV12 Yt - VV12IA(45) + W2VV12It(96) 1- .7B 

+ - 3VV12It(1 12)+ (1 -6012B'12) .22 1-_B (1 - q51B -02 a2 (22 

Using the exact maximum likelihood method, the following 
estimates of model (22) are obtained 

b12 = .7123, kI = -.6877, 
(12.84) (-9.05) 

k2 = -.4622, Ca = .02352, 
(-6.10) 

= .0956, (02 = -.0837, (03 = 7.166. 
(5.35) (-4.44) (-10.42) 

It is found that the estimates obtained from the new joint 
estimation procedure are very close to those obtained from 
the intervention model with outlier information incorpo- 
rated. If we consider the results of the intervention model 
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to be the accurate ones, then the maximum difference in 
parameter estimates produced by the new procedure is less 
than 1% in this case. 

5. SUMMARY AND CONCLUSION 

In this article we study the issue of multiple outliers (AO, 
IO, TC, and LS) in time series modeling. We discuss potential 
masking and spurious effects using the traditional detection 
procedure and develop an iterative procedure for joint es- 
timation of model parameters and outlier effects. Applying 
the proposed procedure, we obtain estimates of the model 
parameters with the consideration of a potential departure 
from the usual ARMA models. In this sense, the procedure 
provides a tool to bridge the gap between the reality and the 
traditional ARMA models in time series analysis. 

Sampling behavior of the associated test statistics is in- 
vestigated through a simulation study. It is found that both 
the length of the series and the method of estimating the 
residual standard deviation have impact on the choice of the 
critical value. The memory pattern of the underlying model 
does not seem to have major influence on the behavior of 
the test statistics except for the level shift test statistic. In the 
performance study we find that the proposed procedure is 
quite effective in outlier detection and parameter estimation 
when proper critical values are used. 

An example is used to illustrate the application of the 
procedure. Based on this example and other studies, the pro- 
cedure seems to be effective in reducing spurious and mask- 
ing effects. The estimates of the model parameters using the 
new procedure are essentially identical to those obtained by 
explicitly incorporating the outliers in the model. Further 
applications of this joint estimation procedure to intervention 
analysis and transfer function modeling can be found in Liu 
and Chen (1991). It is shown that outlier adjustment is an 
indispensable part of intervention analysis. 

[Received September 1990. Revised November 1991.] 
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