Matemática I
O curso de Matemática I do CM tem como programa algo bastante similar ao Cálculo I lecionado em muitas unidades da USP. Apesar disso, a abordagem utilizada é completamente outra, seguindo os moldes do Apostol, bibliografia básica (e completa) do curso.
Ele tem início por uma introdução à análise real, a partir dos axiomas dos números reais, e então constrói um arcabouço inicial de teoremas que é usado para definir e demonstrar as propriedades da integral de Riemann. Depois disso o curso passa à teoria de limites e à derivação e suas aplicações, seguido do Teorema Fundamental do Cálculo e finalmente de técnicas de integração.
Essa ordem é a inversa daquela geralmente adotada pelos livros modernos, que mostram primeiramente limites e derivadas, e depois a integral como "operação inversa da derivada". Embora mais intragável a princípio, este caminho esconde a beleza do Teorema Fundamental do Cálculo - assim denominado não à-toa -, fazendo-o parecer "natural" ou "óbvio" - se é que estes são termos adequados.
Ademais, o Apostol dá forte ênfase à demonstração de teoremas e à construção de conceitos sobre teoremas já demonstrados, evitando assim o uso de "fatos intuitivos" nessa tarefa, de modo que o curso de Matemática do CM é às vezes descrito como "para matemáticos" - o que, entretanto, não me parece muito razoável, já que uma apreciação mais profunda da Matemática, e do Cálculo em particular, exige tal postura (hum, acho que fui contraditório - seria uma apreciação mais profunda da Matemática objeto de estudo somente dos matemáticos?? Espero que não :p).
Ademais, Mané, o professor, é uma lenda.